Rethinking AI’s Energy Consumption: New Report

Photo of night lights from space by NASA on Unsplash
Photo of night lights from space by NASA on Unsplash.

We read the new report by the Center for Data Innovation entitled Rethinking Concerns About AI’s Energy Use and share our key takeaways below. The Center for Data Innovation is a leading think tank studying the intersection of data, technology, and public policy.

Revisiting the Energy Consumption Myths of Digital Progress

The concerns surrounding the energy consumption of digital technologies are not a recent phenomenon. Historically, predictions have often overstated the environmental impact of technological advancements. For example, during the late 1990s, it was inaccurately predicted that the digital economy would consume half of the electric grid’s capacity. These estimates have consistently been proven wrong, as evidenced by the International Energy Agency’s (IEA) current estimation that data centers and data transmission networks each account for only about 1–1.5% of global electricity use.

Similarly, the energy consumption attributed to streaming services like Netflix has been grossly overestimated. Initial claims equated watching 30 minutes of Netflix to driving almost 4 miles, a figure later corrected to resemble the energy used for driving between 10 and 100 yards. Such errors highlight the importance of accurate data and assumptions in forming energy policies.

AI’s Energy Use

As Artificial Intelligence (AI) gains momentum, it faces scrutiny similar to past technologies. Critics fear that AI’s energy consumption, especially for training large deep learning models, could have severe environmental repercussions. However, early claims about AI’s energy use have often been exaggerated. To address these concerns effectively, the report advocates for several policy measures:

  1. Developing Energy Transparency Standards: Establish clear guidelines for AI model energy consumption to ensure transparency and informed decision-making.
  2. Voluntary Commitments on Energy Transparency: Encourage the AI industry to adopt voluntary measures for disclosing the energy use of foundation models.
  3. Evaluating AI Regulations’ Unintended Consequences: Consider how regulations might inadvertently impact AI’s energy efficiency and innovation.
  4. Leveraging AI for Decarbonization: Utilize AI technologies to enhance the energy efficiency of government operations and promote decarbonization efforts.

With diminishing returns on enhancing model accuracy due to already high-performance levels, the focus of AI models (such as OpenAI’s GPT-4 and Google’s Gemini) is increasingly shifting towards optimization. Developers are now more inclined to refine AI models for efficiency rather than pursue marginal accuracy gains. This pivot reflects a maturing industry where optimization takes precedence, aiming for sustainable advancement without the unsustainable expansion of model sizes.

Further, the report also points out that AI offers significant potential to mitigate climate change and support clean energy by optimizing the integration of renewable sources into the grid and enhancing the efficiency of the electric grid through predictive maintenance, grid management, and dynamic pricing across transportation, agriculture, and energy sectors. This suggests a future where AI improvements are nuanced, focusing on energy efficiency and specialized performance enhancements.

Towards a Sustainable AI Future

The path to a sustainable AI future involves demystifying the technology’s actual energy footprint, addressing misconceptions, and implementing policies that promote transparency and efficiency. By learning from past misestimations and focusing on accurate data, we can ensure that AI contributes positively to our environmental goals, debunking myths and fostering innovation that aligns with sustainability.

World Makes Haste Too Slowly on Cutting Energy Use

The annual report card on the global energy industry says progress towards lower energy use must be much faster.

By Kieran Cooke, Climate News Network (CC BY-ND 4.0).

A rich source of methane: Gas hydrate beneath a rock in the Gulf of Mexico. Image: By US Geological Survey (public domain), via Wikimedia Commons
A rich source of methane: Gas hydrate beneath a rock in the Gulf of Mexico. Image: By US Geological Survey (public domain), via Wikimedia Commons

The world is dragging its feet on efforts to tackle the climate crisis by reducing its energy use, according to a global watchdog.

In its World Energy Outlook 2020, the lnternational Energy Agency (IEA) says that while emissions of carbon dioxide (CO2, the main climate-changing greenhouse gas), are falling, the reduction needs to be far steeper to make any meaningful impact.

“Despite a record drop in global emissions this year, the world is far from doing enough to put them into decisive decline”, says Fatih Birol, the IEA’s executive director.

The Agency says energy demand is set to drop by 5% in 2020, with an overall decline of 7% in emissions of CO2 from the global energy sector. This means that annual emissions of CO2 are back to where they were a decade ago, the report says.

Oil demand this year is likely to be down by 8%, while coal use will fall by 7%.

Solar projects now offer some of the lowest-cost electricity ever seen.”

That’s the headline good news: the bad news is that emissions of methane – among the most potent of greenhouse gases – are rising, says the report.

Total global investment in the energy sector is also falling dramatically, and is set to be down 18% year on year.

That means that despite the rise of renewable energy, particularly of solar power, governments, utilities and corporations around the world are still not spending enough to bring about a major transition in energy use – and to meet the challenge of catastrophic climate change.

“Only an acceleration in structural changes to the way the world produces and consumes energy can break the emissions trend for good”, says the IEA.

Problem grids

While hydropower is still the leading source of renewable power, solar is described as the new king of electricity.

“With sharp cost reductions over the past decade, solar PV [solar photovoltaic energy] is consistently cheaper than new coal- or gas-fired power plants in most countries, and solar projects now offer some of the lowest-cost electricity ever seen.”

A major problem is that as solar and wind projects are installed and expanded, other parts of the energy sector also need to be developed, particularly infrastructure associated with electricity grids.

In many parts of the world energy utilities are in severe financial straits and have little or no money to maintain or invest in achieving more efficiencies and in infrastructure.

“Electricity grids could prove to be the weak link in the transformation of the power sector, with implications for the reliability and security of electricity supply”, says the IEA.

Covid-19’s effects

The report says it’s not just the energy industry that has to change. “To reach net-zero emissions, governments, energy companies, investors and citizens all need to be on board – and will all have unprecedented contributions to make.”

The Covid crisis is a major factor in assessing the global energy outlook.

The pandemic, says the IEA, has caused more disruption in the energy sector than any other event in recent history, with impacts for years to come.

“It is too soon to say whether today’s crisis represents a setback for efforts to bring about a more secure and sustainable energy system, or a catalyst that accelerates the pace of change”, the report says. —Climate News Network, LONDON, 16 October, 2020